331 research outputs found

    Stochastic differential equations for evolutionary dynamics with demographic noise and mutations

    Get PDF
    We present a general framework to describe the evolutionary dynamics of an arbitrary number of types in finite populations based on stochastic differential equations (SDE). For large, but finite populations this allows to include demographic noise without requiring explicit simulations. Instead, the population size only rescales the amplitude of the noise. Moreover, this framework admits the inclusion of mutations between different types, provided that mutation rates, μ\mu, are not too small compared to the inverse population size 1/N. This ensures that all types are almost always represented in the population and that the occasional extinction of one type does not result in an extended absence of that type. For μN≪1\mu N\ll1 this limits the use of SDE's, but in this case there are well established alternative approximations based on time scale separation. We illustrate our approach by a Rock-Scissors-Paper game with mutations, where we demonstrate excellent agreement with simulation based results for sufficiently large populations. In the absence of mutations the excellent agreement extends to small population sizes.Comment: 8 pages, 2 figures, accepted for publication in Physical Review

    Asian Influence Over the Western North Pacific during the Fall Season: Inferences from Lead 210, Soluble Ionic Species and Ozone

    Get PDF
    Aerosol samples collected over the western Pacific during the NASA/Global Tropospheric Experiment Pacific Exploratory Mission (PEM-West A) expedition (September - October 1991) revealed mean Pb-210 concentrations in the free troposphere in the 5-10 fCi m(exp -3) STP range. Most soluble ionic aerosol-associated species were near detection limits [much less than 40 parts per trillion by volume (pptv)] in these same samples. The altitude distribution of O3 near Asia closely resembled that of Pb-210, while no relationship was found between the concentrations of O3 and Be-7. Free tropospheric air over the western Pacific was depleted in soluble aerosol-associated species but enriched in Pb-210 and O3, indicative of deep wet convection over the Asian continent. The influence of Asian air on the composition of the free troposphere over the western Pacific was evident on most of the PEM-West A flights. However, evidence of continental influence was largely restricted to those species that are relatively insoluble (or have insoluble precursors), hence escape scavenging during vertical transport from the boundary layer into the free troposphere by wet convective activity

    Fixation, transient landscape and diffusion's dilemma in stochastic evolutionary game dynamics

    Full text link
    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical "device" that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.Comment: 34 pages, 4 figure

    Le Chatelier principle in replicator dynamics

    Full text link
    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both this type of equilibria satisfy the detailed balance condition.Comment: 12 pages, 3 figure
    • …
    corecore